RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.SC. FOURTH SEMESTER (January – June), 2012 Mid-Semester Examination, March 2012

Date : 20/03/2012 Time : 2 pm - 3 pm

CHEMISTRY (General) Paper : IV

Full Marks : 25

[Answer separate Answer Books for each group]

(Answer	<u>any</u>	one	question)	
---------	------------	-----	-----------	--

1.	a)	Compare KMnO ₄ and $K_2Cr_2O_7$ as an analytical reagent.	[11/2]
	b)	Write down the requirements of Gravimetric estimation.	[11/2]
	c)	Write notes on (<u>any one</u>):	[2]
		i) Applications of Common ion effect in analytical chemistry	
		ii) Applications of Solubility Product Principle in analytical Chemistry	
	d)	Carry out the following conversions :	[2·5×2]
		i) D-glucose to D-Mannose	
		ii) D-Arabinose to D-Glucose	
2.	a)	Write short notes on :	[2·5×2]
		i) Mutarotation	
		ii) Osazone formation	
	b)	i) Write down the principle of chromatography.	[2]
		ii) What do you mean by R _f in chromatography	[1]
	c)	Give examples of—	[2]
		i) metal ion Indicator	
		ii) Redox indicator	
		iii) Acid-base indicator	

iv) Adsorption indicator

<u>Group – B</u>

(Answer any one question)

- 3. a) Draw the Carnot cycle in a P V diagram. Also mention the paths.
 - b) Establish the relation between K_P and K_C and therefrom obtain te appropriate equation to discuss the effect of pressure on the equilibrium. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ [3]
 - c) Show that the half life of a 2nd order reaction is inversely proportional to the initial concentration. [2]
 - d) In a chemical reaction the reactant concentration is found to depend on time as shown below.

What is the order of the reaction

[1]

[2]

4.	a)	State any one form of 2nd law of thermodynamics.	[1]
	b)	Calculate the change in entropy when 20 gms of ice at 0° C is converted into water at the same temp. [Latent heat of fusion of ice = 80 cal/gm]	[2]
	c)	i) Draw the energy profile diagram (plot of energy against reaction coordinate) for an one step exothermic reaction.	[3]
		[Show the transition state and the activation energy in the graph]	
		ii) How would this change in presence of a positive catalyst.	[1]
	d)	How does the rate constant of a chemical reaction varies with temperature?	[1]
		<u>Group – C</u>	
		(Answer <u>any one</u> question)	
5.	a)	pH of pure water is temperature dependent phenomenon. Explain.	[2]
	b)	The aqueous solution of sodium fluoride is alkaline whereas in case of sodium chloride it is neutral. Explain in terms of proton.	[2]
	c)	$CS_2SO_2 + SOCl_2 \xrightarrow{SO_2(\ell)}$ complete the reaction and explain with appropriate acid-base	
	•)	concept.	[2]
	d)	Write the conjugate acid, base of the following species HCO_3^- and CH_3OH .	[1]
6.	a)	All Bronsted bases are Lewis bases but all Bronsted acids are not Lewis acid. Explain with example.	[2]
	b)	What do you mean by ionic product and ionisation constant of water. Explain mathematically,	[2]
	c)	Write down the mechanism of buffer action by taking example of both acidic and basic buffer.	[2]
	d)	Calculate the pH of a buffer a solution produced by mixing $0.01(M)$ CH ₃ COOH and $0.03(M)$	[-]

03(M) [1] Calculate the pH of a buffer a solution prod CH₃COONa. (Given pK_a of acetic acid = 4.8)

80卷Q3